Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1090648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035119

RESUMO

The corrosion mechanism and kinetics of the silver-coated conductive yarn (SCCY) used for wearable electronics were investigated under a NaCl solution, a main component of sweat. The corrosion occurs according to the mechanism in which silver reacts with chlorine ions to partly form sliver chloride on the surface of the SCCY and then the local silver chloride is detached into the electrolyte, leading to the electrical disconnect of the silver coating. Thus, the electrical conductance of the SCCY goes to zero after 2.7 h. The radial part-coating of gold, which is continuously electrodeposited in the longitudinal direction on the SCCY but is partly electrodeposited in the radial direction, extends the electrical conducting lifetime up to 192 h, despite the corrosion rate increasing from 129 to 196 mpy (mils per year). Results show that the gold partly-coating on the SCCY provides a current path for electrical conduction along the longitudinal direction until all the silver underneath the gold coating is detached from the SCCY strands, which creates the electrical disconnect. Based on the corrosion behavior, i.e., local oxidation and detachment of silver from the SCCY, the gold part-coating is more cost effective than the gold full-coating electrodeposited on the entire surface for electrically conducting SCCY.

2.
Pharmaceutics ; 13(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34371784

RESUMO

Prostate and breast cancer are the current leading causes of new cancer cases in males and females, respectively. Phosphatidylserine (PS) is an essential lipid that mediates macrophage efferocytosis and is dysregulated in tumors. Therefore, developing therapies that selectively restore PS may be a potential therapeutic approach for carcinogenesis. Among the nanomedicine strategies for delivering PS, biocompatible gold nanoparticles (AuNPs) have an extensive track record in biomedical applications. In this study, we synthesized biomimetic phosphatidylserine-caped gold nanoparticles (PS-AuNPs) and tested their anticancer potential in breast and prostate cancer cells in vitro. We found that both cell lines exhibited changes in cell morphology indicative of apoptosis. After evaluating for histone-associated DNA fragments, a hallmark of apoptosis, we found significant increases in DNA fragmentation upon PS-AuNP treatment compared to the control treatment. These findings demonstrate the use of phosphatidylserine coupled with gold nanoparticles as a potential treatment for prostate and breast cancer. To the best of our knowledge, this is the first time that a phosphatidylserine-capped AuNP has been examined for its therapeutic potential in cancer therapy.

3.
Front Chem ; 7: 415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31245354

RESUMO

ZnO nanorods (NRs) decorated with Ni nanoparticles were synthesized using a template-free electrochemical deposition in an ultra-dilute aqueous electrolyte and a subsequent galvanic reaction. The electrochemical properties of the ZnO NRs as an anode material for rechargeable Li-ion batteries were evaluated for different binder morphologies (film and close-packed spherical particles) of polyvinylidene fluoride (PVDF). Results showed that the close-packed spherical PVDF simultaneously improved electrochemical capacity and cyclability because the free-volume between the spherical PVDF helped to accommodate the volume change in the anode caused by the Li ions discharge and charge processes. Furthermore, the Ni nanoparticles decorated on the surface of ZnO NRs enhanced the electrical conductivity of the ZnO NR anode, which enabled faster electronic and ionic transport at the interface between the electrolyte and the electrode, resulting in improved electrochemical capacity. The free-volume formed by the close-packed spherical PVDF, and the decoration of metal nanoparticles are expected to provide insight on the simultaneous improvement of electrochemical capacity and cyclability in other metal oxide anode nanostructures.

4.
Nanotechnology ; 28(18): 18LT01, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346218

RESUMO

Semiconducting two-dimensional (2D) materials, particularly extremely thin molybdenum disulfide (MoS2) films, are attracting considerable attention from academia and industry owing to their distinctive optical and electrical properties. Here, we present the direct growth of a MoS2 monolayer with unprecedented spatial and structural uniformity across an entire 8 inch SiO2/Si wafer. The influences of growth pressure, ambient gases (Ar, H2), and S/Mo molar flow ratio on the MoS2 layered growth were explored by considering the domain size, nucleation sites, morphology, and impurity incorporation. Monolayer MoS2-based field effect transistors achieve an electron mobility of 0.47 cm2 V-1 s-1 and on/off current ratio of 5.4 × 104. This work demonstrates the potential for reliable wafer-scale production of 2D MoS2 for practical applications in next-generation electronic and optical devices.

6.
J Nanosci Nanotechnol ; 10(11): 7060-4, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21137865

RESUMO

High-resolution studies of self-assemblies of semifluorinated alkanes molecules F12H8 and F14H20 [FnHm = CF3(CF2)n(CH2)mCH3], and CdTe particles were performed with single-pass Kelvin force microscopy. Surface potential contrast, which is related to the strength and orientation of molecular dipoles, empowers the characterization of self-organized structures. Lamellar structures, ribbons and toroids of F14H20 and F12H8 were observed on graphite and the differences of surface potential were interpreted in terms orientation of -CH2-CF2- dipoles. A gradual sublimation of F12H8 molecules allowed a visualization of top and bottom molecular layers on the substrate. Prior to the sublimation a part of lamellae of the bottom layers was transformed into the ribbons. The surface potential data suggest that this transition proceeds with the reorientation of the molecular chains from the horizontal to vertical direction. Self-assembly of CdTe nanoparticles into nanowires was monitored upon drying on mica. The process is accompanied by drastic changes of surface potential. The formed nanowires exhibit strong positive surface potential that assumes a structural transition with a formation of strong dipole moment in these self-assemblies.

7.
Chem Commun (Camb) ; (9): 1052-4, 2009 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19225633

RESUMO

Without any catalysts or feeding source gases, highly crystalline Cr nanowires were directly synthesized on a flexible polymeric substrate using microwaves and the surface of the as-grown Cr nanowires showed superhydrophobicity.

8.
Small ; 1(5): 553-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-17193485

RESUMO

Vertically aligned carbon-nanotube (CNT) arrays were fabricated in the thin-film anodic aluminum oxide (AAO) templates on silicon wafers utilizing a niobium (Nb) thin film as the source electrode. The average diameter of the CNTs was 25 nm, and the number density was 3 x 10(10) cm(-2). The CNT arrays synthesized at 700 degrees C and above exhibited Schottky behavior even at 300 K, with energy gaps between 0.2 eV and 0.3 eV. However, individual CNTs obtained by removal of the template behaved as resistors at 300 K. The CNT/Nb oxide/Nb junction is thought to be responsible for the Schottky behavior. This structure can be a useful cornerstone in the fabrication of nanotransistors operating at room temperature.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Nióbio/química , Alumínio/química , Carbono , Eletroquímica , Eletrodos , Eletrônica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas , Nanotecnologia/instrumentação , Óxidos/química , Silício/química , Temperatura , Transistores Eletrônicos
9.
J Am Chem Soc ; 126(49): 15982-3, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15584730

RESUMO

A chemical route to single-walled carbon nanotubes (SWCNTs) under ambient conditions has been developed. Silica powder was immersed in a mixture solution of ferrocene and p-xylene. After sonication at atmospheric pressure and room temperature, we obtained high-purity SWCNTs. Sonochemical effects may lead to producing high-purity SWCNTs. The process could be readily generalized to synthesize other forms of carbon-based materials, such as fullerenes, multiwalled nanotubes, carbon onions, and diamond, in liquid solution under ambient conditions.


Assuntos
Compostos Ferrosos/química , Nanotubos de Carbono/química , Dióxido de Silício/química , Xilenos/química , Pressão Atmosférica , Metalocenos , Soluções , Sonicação , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...